About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ACM Transactions on Programming Languages and Systems (TOPLAS)
Paper
The Program Dependence Graph and Its Use in Optimization
Abstract
In this paper we present an intermediate program representation, called the program dependence graph (PDG), that makes explicit both the data and control dependences for each operation in a program. Data dependences have been used to represent only the relevant data flow relationships of a program. Control dependences are introduced to analogously represent only the essential control flow relationships of a program. Control dependences are derived from the usual control flow graph. Many traditional optimizations operate more efficiently on the PDG. Since dependences in the PDG connect computationally related parts of the program, a single walk of these dependences is sufficient to perform many optimizations. The PDG allows transformations such as vectorization, that previously required special treatment of control dependence, to be performed in a manner that is uniform for both control and data dependences. Program transformations that require interaction of the two dependence types can also be easily handled with our representation. As an example, an incremental approach to modifying data dependences resulting from branch deletion or loop unrolling is introduced. The PDG supports incremental optimization, permitting transformations to be triggered by one another and applied only to affected dependences. © 1987, ACM. All rights reserved.