About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
INTERSPEECH 2015
Conference paper
The IBM 2015 English conversational telephone speech recognition system
Abstract
We describe the latest improvements to the IBM English conversational telephone speech recognition system. Some of the techniques that were found beneficial are: maxout networks with annealed dropout rates; networks with a very large number of outputs trained on 2000 hours of data; joint modeling of partially unfolded recurrent neural networks and convolutional nets by combining the bottleneck and output layers and retraining the resulting model; and lastly, sophisticated language model rescoring with exponential and neural network LMs. These techniques result in an 8.0% word error rate on the Switchboard part of the Hub5-2000 evaluation test set which is 23% relative better than our previous best published result.