About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Trans. Inf. Theory
Paper
The entropy power inequality for quantum systems
Abstract
When two independent analog signals, X and Y are added together giving Z = X + Y, the entropy of Z, H(Z), is not a simple function of the entropies H(X) and H(Y), but rather depends on the details of X and Y's distributions. Nevertheless, the entropy power inequality (EPI), which states that e 2H(Z) ≥ e2H(X) + e2H(Y), gives a very tight restriction on the entropy of Z. This inequality has found many applications in information theory and statistics. The quantum analogue of adding two random variables is the combination of two independent bosonic modes at a beam splitter. The purpose of this paper is to give a detailed outline of the proof of two separate generalizations of the EPI to the quantum regime. Our proofs are similar in spirit to the standard classical proofs of the EPI, but some new quantities and ideas are needed in the quantum setting. In particular, we find a new quantum de Bruijin identity relating entropy production under diffusion to a divergence-based quantum Fisher information. Furthermore, this Fisher information exhibits certain convexity properties in the context of beam splitters. © 2014 IEEE.