Journal of Membrane Science

The effect of cross-contamination in the sequential interfacial polymerization on the RO performance of polyamide bilayer membranes

View publication


In this study, hexafluoroalcohol-containing polyamide layer (HFAPA) was prepared on top of a conventional polyamide under-layer (REFPA) via sequential interfacial polymerization (SIP) to improve RO separation behavior, and the performance of the resulting bilayer membrane was thoroughly optimized by investigating the effect of cross-contamination in the SIP process. When several coupons of the polyamide bilayer membrane were prepared by SIP of MPD(aq), TMC(hx) and hexafluoroalcohol-containing diamine (HFAMDA)(aq) in the manner of subsequent membrane dipping, unreacted MPD monomer (mostly captured in the porous PSF support) carried over from the 1st interfacial reaction dissolved and accumulated in the 2nd aqueous solution as verified by UV spectroscopic analysis. The MPD contaminant then participated in the 2nd interfacial reaction, forming copolyamide with HFAMDA monomer onto the REFPA. Depending on the amount of MPD contaminant accumulated in the 2nd aqueous solution, the composition of the resulting co-polyamide in the top-layer varied, causing a significant variation of RO performance; the flux was gradually decreased with the increase of MPD contaminants while the salt rejection slightly increased (from 1st coupon toward 4th coupon). This result indicated that a trace amount of MPD contaminant may be necessary to maximize RO separation behavior. Through in-depth performance evaluation of polyamide bilayer membranes prepared by adding various known-amount of MPD into 2nd HFAMDA solution, and also by applying a frame process (2nd amine solution was applied only top surface of membrane) to eliminate uncontrollable MPD contamination, we have successfully demonstrated consistent RO performance, and identified an optimum material composition to provide superior separation performance. The bilayer membrane prepared by adding 1.2mol% of MPD to the total amount of HFAMDA in the 2nd aqueous solution showed 99.8% NaCl rejection with the water flux of 45 LMH under the cross-flow filtration performed with 2000ppm NaCl solution at 400psi, 25°C. © 2014 Elsevier B.V.