About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Quantum Information and Computation
Paper
The complexity of stoquastic local Hamiltonian problems
Abstract
We study the complexity of the Local Hamiltonian Problem (denoted as LH-MIN) in the special case when a Hamiltonian obeys the condition that all off-diagonal matrix elements in the standard basis are real and non-positive. We will call such Hamiltonians, which are common in the natural world, stoquastic. An equivalent characterization of stoquastic Hamiltonians is that they have an entry-wise non-negative Gibbs density matrix for any temperature. We prove that LH-MIN for stoquastic Hamiltonians belongs to the complexity class AM - a probabilistic version of NP with two rounds of communication between the prover and the verifier. We also show that 2-local stoquastic LH-MIN is hard for the class MA. With the additional promise of having a polynomial spectral gap, we show that stoquastic LH-MIN belongs to the class PostBPP=BPPpath-a generalization of BPP in which a post-selective readout is allowed. This last result also shows that any problem solved by adiabatic quantum computation using stoquastic Hamiltonians is in PostBPP. © Rinton Press.