About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
MICCAI 2020
Conference paper
The Case of Missed Cancers: Applying AI as a Radiologist’s Safety Net
Abstract
We investigate the potential contribution of an AI system as a safety net application for radiologists in breast cancer screening. As a safety net, the AI alerts on cases suspected to be malignant which the radiologist did not recommend for a recall. We analyzed held-out data of 2,638 exams enriched with 90 missed cancers. In screening mammography settings, we show that a system alerting on 11 out of every 1,000 cases, could detect up to 10.7% of the radiologists’ missed cancers. Thus, significantly increasing radiologist’s sensitivity to 80.3%, while only slightly decreasing their specificity to 95.3%. Importantly, the safety net demonstrated a significant contribution to their performance even when radiologists utilized both mammography and ultrasound images. In those settings, it would have alerted 8.5 times per 1,000 cases, and detected 11.7% of the radiologists’ missed cancers. In an analysis of the missed cancers by an expert, we found that most of the cancers detected by the AI were visible post-hoc. Finally, we performed a reader study with five radiologists over 120 exams, 10 of which were originally missed cancers. The AI safety net was able to assist 3 out of the 5 radiologists in detecting missed cancers without raising any false alerts.