David W. Jacobs, Daphna Weinshall, et al.
IEEE Transactions on Pattern Analysis and Machine Intelligence
We investigate the complexity of algebraic decision trees deciding membership in a hypersurface X ⊂ Cm. We prove an optimal lower bound on the number of additions, subtractions, and comparisons and an asymptotically optimal lower bound on the number of multiplications, divisions, and comparisons that are needed to decide membership in a generic hypersurface X ⊂ Cm. Over the reals, where in addition to equality branching also ≤-branching is allowed, we prove an analogous statement for irreducible "generic" hypersurfaces X ⊂ Rm. In the case m = 1 we give also a lower bound for finite subsets X ⊂ R. © 1992.
David W. Jacobs, Daphna Weinshall, et al.
IEEE Transactions on Pattern Analysis and Machine Intelligence
Fausto Bernardini, Holly Rushmeier
Proceedings of SPIE - The International Society for Optical Engineering
S.F. Fan, W.B. Yun, et al.
Proceedings of SPIE 1989
Jonathan Ashley, Brian Marcus, et al.
Ergodic Theory and Dynamical Systems