Laxmi Parida, Pier F. Palamara, et al.
BMC Bioinformatics
We investigate the complexity of algebraic decision trees deciding membership in a hypersurface X ⊂ Cm. We prove an optimal lower bound on the number of additions, subtractions, and comparisons and an asymptotically optimal lower bound on the number of multiplications, divisions, and comparisons that are needed to decide membership in a generic hypersurface X ⊂ Cm. Over the reals, where in addition to equality branching also ≤-branching is allowed, we prove an analogous statement for irreducible "generic" hypersurfaces X ⊂ Rm. In the case m = 1 we give also a lower bound for finite subsets X ⊂ R. © 1992.
Laxmi Parida, Pier F. Palamara, et al.
BMC Bioinformatics
Trang H. Tran, Lam Nguyen, et al.
INFORMS 2022
R.A. Brualdi, A.J. Hoffman
Linear Algebra and Its Applications
David Cash, Dennis Hofheinz, et al.
Journal of Cryptology