About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Theoretical Computer Science
Paper
Symmetry breaking depending on the chromatic number or the neighborhood growth
Abstract
We deterministically compute a Δ+1 coloring and a maximal independent set(MIS) in time O(Δ1/2+Θ(1/√h)+log*n) for Δ1+i≤Δ1+i/h, where Δj is defined as the maximal number of nodes within distance j for a node and Δ:=Δ1. Our greedy coloring and MIS algorithms improve the state-of-the-art algorithms running in O(Δ+log*n) for a large class of graphs, i.e., graphs of (moderate) neighborhood growth with h≥36. We also state and analyze a randomized coloring algorithm in terms of the chromatic number, the run time and the used colors. Our algorithm runs in time O(logχ+log*n) for Δ∈Ω(log1+1/log*nn) and χ∈O(Δ/log1+1/log*nn). For graphs of polylogarithmic chromatic number the analysis reveals an exponential gap compared to the fastest Δ+1 coloring algorithm running in time O(logΔ+√log n). The algorithm works without knowledge of χ and uses less than Δ colors, i.e., (1-1/O(χ))Δ with high probability. To the best of our knowledge this is the first distributed algorithm for (such) general graphs taking the chromatic number χ into account. We also improve on the state of the art deterministic computation of (2,c)-ruling sets. © 2012 Elsevier B.V. All rights reserved.