About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Proceedings of the IRE
Paper
Switching Speed and Dissipation in Fast, Thin-Film Cryotron Circuits
Abstract
As thin-film cryotron circuits become faster, the detailed properties of the components themselves have an increasing effect on over-all circuit operation. When a cryotron switches from the superconducting to the resistive state in a fast circuit, its inductive characteristics can change enough to add appreciable delay and dissipation to its driving circuit. The inductive and resistive transition of the component can be accompanied by diamagnetic hysteresis and by eddy-current-damping effects, which add to dissipation and further delay the switching of the component. These component and circuit effects are complex and interrelated, but considerable insight is gained by analyzing separately various portions of the general behavior. © 1962, IEEE. All rights reserved.