About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Nanomedicine: NBM
Paper
Supramolecular nanofibers self-assembled from cationic small molecules derived from repurposed poly(ethylene teraphthalate) for antibiotic delivery
Abstract
Low molecular weight cationic compounds were synthesized from re-purposed poly(ethylene teraphthalate) (PET) and used to self-assemble into high aspect ratio supramolecular nanofibers for encapsulation and delivery of anionic antibiotics. The antibiotic piperacillin/tazobactam (PT) was successfully loaded into the nanofibers through ionic interaction between anionic PT and the cationic nanofibers without loss of the nanofiber features. These PT-loaded nanofibers demonstrated high loading efficiency and sustained delivery for PT. The antimicrobial activity of PT-loaded nanofibers remained potent towards both Gram-positive and Gram-negative bacteria. Importantly, in a P. aeruginosa-infected mouse skin wound model, the treatment with the PT-loaded nanofibers was more effective than free PT for wound healing as evidenced by the significantly lower P. aeruginosa counts at the wound sites and histological analysis. This strategy can be applied to deliver a variety of anionic antibiotics for improved treatment efficacy of various infections.