About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
EMNLP 2016
Conference paper
Supervised attentions for neural machine translation
Abstract
In this paper, we improve the attention or alignment accuracy of neural machine translation by utilizing the alignments of training sentence pairs. We simply compute the distance between the machine attentions and the “true” alignments, and minimize this cost in the training procedure. Our experiments on large-scale Chinese-to-English task show that our model improves both translation and alignment qualities significantly over the large-vocabulary neural machine translation system, and even beats a state-of-the-art traditional syntax-based system.