About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Communications Letters
Paper
Summarizing data center network traffic by partitioned conservative update
Abstract
Applications like search and massive data analysis running bandwidth-hungry algorithms like MapReduce in data center networks (DCNs) may lead to link congestion. Thus it is important to identify the source of congestions in real-time. In this letter, we propose a sketch-based data structure, called "P(d)-CU", to estimate the aggregated/summarized flow statistics over time that guarantees high estimation accuracy with low computational complexity, and scales well with the increase of input data size. Considering the amount of skew for flows of different network services, it partitions a two-dimensional array of counters along its depth as an enhancement to the existing Conservative Update (CU) mechanism. We show its superior performance by theoretical analysis and sufficient experimental results on a real DCN trace. © 1997-2012 IEEE.