About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
International Journal of Hydrogen Energy
Paper
Substrate effects on photoelectrochemical kinetics in hydrogen production
Abstract
The surface of p-Si has been treated in a number of ways, and the rate of the photoelectrochemical reduction of water to hydrogen measured on each type of surface. Correspondingly, in-situ ellipsometric determinations of thickness and refractive index of the surface films were made; corresponding XPS, ISS and SIMS studies were also carried out. The photoelectrochemical activities of the surfaces, as measured by the positive shift on the potential axis of the mid-current point of the photocurrent/potential curve, differed greatly. In treatments with HF, the chemical structure of the surface remains that of SiO2; in treatments with aquaregia and HF, the surface becomes SiO. After hydrogen evolution, SiOH bonds appear. The degree of dependence of the photoelectrochemical activity on the surface characteristics indicates that a reaction at the semiconductor/solution interface controls the overall (consecutive) photoelectrochemical reaction. The increase in rate with change of surface structure depends on the following factors in increasing order of importance: the presence of band gap surface states, the (established) jump in the order of magnitude of conductance of SiOx at x = 1.8, and the (argued) increasing availability of Si bonds during increasing reduction of the surface, thus causing an increase in the rate constant of a rate-determining proton transfer. © 1984.