About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICASSP 2011
Conference paper
Subsequence similarity language models
Abstract
In this work we present the Subsequence Similarity Language Model (S2-LM) which is a new approach to language modeling based on string similarity. As a language model, S2-LM generates scores based on the closest matching string given a very large corpus. In this paper we describe the properties and advantages of our approach and describe efficient methods to carry out its computation. We describe an n-best rescoring experiment intended to show that S2-LM can be adjusted to behave as an n-gram SLM model. © 2011 IEEE.