About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Subnanosecond optical free-induction decay
Abstract
A novel form of laser frequency switching is devised which extends coherent optical transient studies to a 100-psec time scale. The technique incorporates a traveling-wave electro-optic element which imposes with unit efficiency a uniform time-varying phase and thus a frequency shift on a cw laser beam. In contrast to earlier optical traveling-wave modulators which are driven by a microwave oscillator, here the optical phase change is induced rapidly and easily by a dc electric field pulse that propagates in a microwave guide either parallel or antiparallel to the light wave. This advance enables optical free-induction decay (FID) studies on a subnanosecond time scale and reveals such new features as a rapid first-order FID that dephases with the inhomogeneous dephasing time T2*. The well-known nonlinear FID can interfere with the first-order component at short times and decays over the much longer period T2[1+(1+χ2T1T2)12], where χ is the Rabi frequency. A complete analytical expression is derived for optical FID of a transition subject to homogeneous and inhomogeneous broadening and supports detailed observations of the sodium D1 line. © 1979 The American Physical Society.