About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
New Journal of Physics
Paper
Structure and oscillatory multilayer relaxation of the bismuth (100) surface
Abstract
We present a combined experimental and theoretical study of the surface structure of single crystal Bi(100) via scanning tunneling microscopy (STM), low-energy electron diffraction intensity versus energy (LEED-IV) analysis and density functional theory (DFT). We find that the surface is unreconstructed and shows an unusually large oscillatory multilayer relaxation down to the sixth layer. This unexpected behavior will be explained by a novel mechanism related to the deeply penetrating electronic surface states. STM reveals wide (100) terraces, which are separated by two-layer high steps in which the shorter of the two interlayer spacings is terminating this surface, consistent with the LEED structural analysis and DFT. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.