About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ACS Nano
Paper
Structure and electronic properties of grain boundaries in earth-abundant photovoltaic absorber Cu2ZnSnSe4
Abstract
We have studied the atomic and electronic structure of Cu 2ZnSnSe4 and CuInSe2 grain boundaries using first-principles calculations. We find that the constituent atoms at the grain boundary in Cu2ZnSnSe4 create localized defect states that promote the recombination of photon-excited electron and hole carriers. In distinct contrast, significantly lower density of defect states is found at the grain boundaries in CuInSe2, which is consistent with the experimental observation that CuInSe2 solar cells exhibit high conversion efficiency without the need for deliberate passivation. Our investigations suggest that it is essential to effectively remove these defect states in order to improve the conversion efficiency of solar cells with Cu 2ZnSnSe4 as photovoltaic absorber materials. © 2011 American Chemical Society.