About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Annals of Operations Research
Paper
Strong polynomiality of the Gass-Saaty shadow-vertex pivoting rule for controlled random walks
Abstract
We consider the subclass of linear programs that formulate Markov Decision Processes (mdps). We show that the Simplex algorithm with the Gass-Saaty shadow-vertex pivoting rule is strongly polynomial for a subclass of mdps, called controlled random walks (CRWs); the running time is O({pipe}S{pipe}3{dot operator}{pipe}U{pipe}2), where {pipe}S{pipe} denotes the number of states and {pipe}U{pipe} denotes the number of actions per state. This result improves the running time of Zadorojniy et al. (Mathematics of Operations Research 34(4):992-1007, 2009) algorithm by a factor of {pipe}S{pipe}. In particular, the number of iterations needed by the Simplex algorithm for CRWs is linear in the number of states and does not depend on the discount factor. © 2012 Springer Science+Business Media, LLC.