About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Acta Materialia
Paper
Stiffening of organosilicate glasses by organic cross-linking
Abstract
Atomistic simulations show that organosilicates, used as low permittivity dielectric materials in advanced integrated circuits, can be made substantially stiffer than amorphous silica, while maintaining a lower mass density. The enhanced stiffness is achieved by incorporating organic cross-links to replace bridging oxygen atoms in the silica network. To elucidate the mechanism responsible for the enhanced stiffness, the conformational changes in the network upon hydrostatic and shear loading are examined. The structural and mechanical impact of terminal methyl groups is also assessed quantitatively and compared with continuous random network theory. © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.