About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IBM J. Res. Dev
Paper
Stateless cryptography for virtual environments
Abstract
Migrating systems onto virtualized environments, such as cloud platforms, is becoming a business imperative. Such platforms offer the promise of higher resilience combined with a relatively low cost of ownership. The platforms also involve a number of challenges that hinder their adoption, and a primary concern involves security. These security concerns stem in part from vulnerabilities that underlying virtualization functionality introduces, such as the ability to capture and replay the execution state of a virtualized machine. In systems where security is paramount, HSMs (hardware security modules) are often used. HSMs provide a tamper-resistant environment for storing sensitive cryptographic material and for executing cryptographic operations using this material. HSMs may appear to be important components for enhancing the security of virtual environments; however, current implementations are not well suited for this purpose. In this paper, we describe a typical HSM solution stack based on the de facto industry standard called PKCS #11 (Public Key Cryptography Standard # 11). We explain the challenges introduced by virtualized platforms and show why the typical architectures based on PKCS #11 are not suitable for such environments. Finally, we describe an alternative IBM HSM solution called EP11 (Enterprise PKCS #11) and show how it addresses many of these challenges.