About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
RecSys 2009
Conference paper
Stacking recommendation engines with additional meta-features
Abstract
In this paper, we apply stacking, an ensemble learning method, to the problem of building hybrid recommendation systems. We also introduce the novel idea of using runtime metrics which represent properties of the input users/items as additional meta-features, allowing us to combine component recommendation engines at runtime based on user/item characteristics. In our system, component engines are level-1 predictors, and a level-2 predictor is learned to generate the final prediction of the hybrid system. The input features of the level-2 predictor are predictions from component engines and the runtime metrics. Experimental results show that our system outperforms each single component engine as well as a static hybrid system. Our method has the additional advantage of removing restrictions on component engines that can be employed; any engine applicable to the target recommendation task can be easily plugged into the system. Copyright 2009 ACM.