Publication
Nano Letters
Paper

Stable Self-Catalyzed Growth of III-V Nanowires

View publication

Abstract

Nanowire growth has generally relied on an initial particle of a catalyst such as Au to define the wire diameter and stabilize the growth. Self-catalyzed growth of III-V nanowires avoids the need for a foreign element, with the nanowire growing from the vapor via a droplet of the native group-III liquid. However, as suggested by Gibbs phase rule, the absence of third element has a destabilizing effect. Here we analyze this system theoretically, finding that growth can be dynamically stable at pressures far above the equilibrium vapor pressure. Steady-state growth occurs via kinetic self-regulation of the droplet volume and wire diameter. In particular, for a given temperature and source-gas pressures there is a unique stable wire diameter and droplet volume, both of which decrease with increasing V/III ratio. We also examine the evolution of the droplet size and wire diameter toward the steady state as the wire grows and discuss implications for structural control.

Date

21 Sep 2015

Publication

Nano Letters

Authors

Share