About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
FOCS 1998
Conference paper
Stability of adversarial queues via fluid models
Abstract
The subject of this paper is stability properties of adversarial queueing networks. Such queueing systems are used to model packet switch communication networks, in which packets are generated and routed dynamically, and have become a subject of research focus recently. Adversarial queueing networks are defined to be stable, if the number of packets stays bounded over time. A central question is determining which adversarial queueing networks are stable, when an arbitrary greedy packet routing policy is implemented. In this paper we show how stability of a queueing network can be determined by considering an associated fluid models. Our main result is that the stability of the fluid model implies the stability of an underlying adversarial queueing network. This opens an opportunity for analyzing stability of adversarial networks, using established stability methods from continuous time processes, for example, the method of Lyapunov function or trajectory decomposition. We demonstrate the use of these methods on several examples.