About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
GeoInformatica
Paper
SST: Synchronized Spatial-Temporal Trajectory Similarity Search
Abstract
The volume of trajectory data has become tremendously large in recent years. How to effectively and efficiently search similar trajectories has become an important task. Firstly, to measure the similarity between a trajectory and a query, literature works compute spatial similarity and temporal similarity independently, and next sum the two weighted similarities. Thus, two trajectories with high spatial similarity and low temporal similarity will have the same overall similarity with another two trajectories with low spatial similarity and high temporal similarity. To overcome this issue, we propose to measure the similarity by synchronously matching the spatial distance against temporal distance. Secondly, given this new similarity measurement, to overcome the challenge of searching top-k similar trajectories over a huge trajectory database with non-trivial number of query points, we propose to efficiently answer the top-k similarity search by following two techniques: trajectory database grid indexing and query partitioning. The performance of our proposed algorithms is studied in extensive experiments based on two real data sets.