About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
CoNEXT 2010
Conference paper
Spatio-temporal patterns in network events
Abstract
Operational networks typically generate massive monitoring data that consist of local (in both space and time) observations of the status of the networks. It is often hypothesized that such data exhibit both spatial and temporal correlation based on the underlying network topology and time of occurrence; identifying such correlation patterns offers valuable insights into global network phenomena (e.g., fault cascading in communication networks). In this paper we introduce a new class of models suitable for learning, indexing, and identifying spatio-temporal patterns in network monitoring data. We exemplify our techniques with the application of fault diagnosis in enterprise networks. We show how it can help network management systems (NMSes) to effciently detect and localize potential faults (e.g., failure of routing protocols or network equipments) by analyzing massive operational event streams (e.g., alerts, alarms, and metrics). We provide results from extensive experimental studies over real network event and topology datasets to explore the effcacy of our solution. © 2010 ACM.