About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICASSP 2011
Conference paper
Spatially-correlated sensor discriminant analysis
Abstract
A study of generalization error in signal detection by multiple spatially-distributed and -correlated sensors is provided when the detection rule is learned from a finite number of training samples via the classical linear discriminant analysis formulation. Spatial correlation among sensors is modeled by a Gauss-Markov random field defined on a nearest neighbor graph according to inter-sensor spatial distance, where sensors are placed randomly on a growing bounded region of the plane. A fairly simple approximate expression for generalization error is derived involving few parameters. It is shown that generalization error is minimized not when there are an infinite number of sensors, but a number of sensors equal to half the number of samples in the training set. The minimum generalization error is related to a single parameter of the sensor spatial location distribution, derived based on weak laws of large numbers in geometric probability. The finite number of training samples acts like a budgeting variable, similar to a total communication power constraint. © 2011 IEEE.