About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICDMW 2009
Conference paper
Sparse least-squares methods in the Parallel Machine Learning (PML) framework
Abstract
We describe parallel methods for solving large-scale, high-dimensional, sparse least-squares problems that arise in machine learning applications such as document classification. The basic idea is to solve a two-class response problem using a fast regression technique based on minimizing a loss function, which consists of an empirical squared-error term, and one or more regularization terms. We consider the use of Lanczos-based methods for solving these regularized least-squares problems, with the parallel implementation in the Parallel Machine Learning (PML) framework, and performance results on the IBM Blue Gene/P parallel computer. © 2009 IEEE.