About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
CF 2017
Conference paper
Sorting big data on heterogeneous near-data processing systems
Abstract
Big data workloads assumed recently a relevant importance in many business and scientific applications. Sorting ele-ments efficiently in big data workloads is a key operation. In this work, we analyze the implementation of the mergesort algorithm on heterogeneous systems composed of CPUs and near-data processors located on the system memory channels. For configurations with equal number of active CPU cores and near-data processors, our experiments show a per-formance speedup of up to 2.5, as well as up to 2.5× energy-per-solution reduction.