About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Statistical Planning and Inference
Paper
Some theory and practical uses of trimmed L-moments
Abstract
Trimmed L-moments, defined by Elamir and Seheult [2003. Trimmed L-moments. Comput. Statist. Data Anal. 43, 299-314], summarize the shape of probability distributions or data samples in a way that remains viable for heavy-tailed distributions, even those for which the mean may not exist. We derive some further theoretical results concerning trimmed L-moments: a relation with the expansion of the quantile function as a weighted sum of Jacobi polynomials; the bounds that must be satisfied by trimmed L-moments; recurrences between trimmed L-moments with different degrees of trimming; and the asymptotic distributions of sample estimators of trimmed L-moments. We also give examples of how trimmed L-moments can be used, analogously to L-moments, in the analysis of heavy-tailed data. Examples include identification of distributions using a trimmed L-moment ratio diagram, shape parameter estimation for the generalized Pareto distribution, and fitting generalized Pareto distributions to a heavy-tailed data sample of computer network traffic. © 2007 Elsevier B.V. All rights reserved.