Isotropic treatment of EMF effects in advanced photomasks
Jaione Tirapu Azpiroz, Alan E. Rosenbluth, et al.
SPIE Photomask Technology + EUV Lithography 2009
We explicitly obtain, for K(x, y) totally positive, a best choice of functions u1, ..., un and v1, ..., vn for the problem minui, vi (∝01 (∝01 |K(x, y) - ∑i = 1, n ui(x) vi(y)| dyp dx) 1 p, where ui ε{lunate} Lp[0, 1], vi ε{lunate} L1[0, 1], i = 1, ..., n, and p ε{lunate} [1, ∞]. We show that an optimal choice is determined by certain sections K(x, ξ1), ..., K(x, ξn), and K(τ1, y), ..., K(τn, y) of the kernel K. We also determine the n-widths, both in the sense of Kolmogorov and of Gel'fand, and identify optimal subspaces, for the set Kr,v = {f(x) = ∑ i=1 raiki(x) + ∫ 0 1K(x,y)h(y)dy, (a1, ..., ar)ε{lunate}Rr, {norm of matrix}h{norm of matrix}p≤1}, as a subset of Lq[0, 1], with either p = ∞ and q ε{lunate} [1, ∞], or p ε{lunate} [1, ∞] and q = 1, where {k1(x), ..., kr(x), K(x, y)} satisfy certain restrictions. A particular example is the ball Br,v = {f} in the Sobolev space. © 1978.
Jaione Tirapu Azpiroz, Alan E. Rosenbluth, et al.
SPIE Photomask Technology + EUV Lithography 2009
Daniel J. Costello Jr., Pierre R. Chevillat, et al.
ISIT 1997
Zhengxin Zhang, Ziv Goldfeld, et al.
Foundations of Computational Mathematics
Moutaz Fakhry, Yuri Granik, et al.
SPIE Photomask Technology + EUV Lithography 2011