About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
EUSIPCO 2020
Conference paper
Smooth strongly convex regression
Abstract
Convex regression (CR) is the problem of fitting a convex function to a finite number of noisy observations of an underlying convex function. CR is important in many domains and one of its workhorses is the non-parametric least square estimator (LSE). Currently, LSE delivers only non-smooth non-strongly convex function estimates. In this paper, leveraging recent results in convex interpolation, we generalize LSE to smooth strongly convex regression problems. The resulting algorithm relies on a convex quadratically constrained quadratic program. We also propose a parallel implementation, which leverages ADMM, that lessens the overall computational complexity to a tight Opn2q for n observations. Numerical results support our findings.