About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
AISTATS 2018
Conference paper
Slow and stale gradients can win the race: Error-Runtime trade-offs in distributed SGD
Abstract
Distributed Stochastic Gradient Descent (SGD) when run in a synchronous manner, suffers from delays in waiting for the slowest learners (stragglers). Asynchronous methods can alleviate stragglers, but cause gradient staleness that can adversely affect convergence. In this work we present the first theoretical characterization of the speed-up offered by asynchronous methods by analyzing the trade-off between the error in the trained model and the actual training runtime (wallclock time). The novelty in our work is that our runtime analysis considers random straggler delays, which helps us design and compare distributed SGD algorithms that strike a balance between stragglers and staleness. We also present a new convergence analysis of asynchronous SGD variants without bounded or exponential delay assumptions, and a novel learning rate schedule to compensate for gradient staleness.