About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Chemical Physics
Paper
Singlet excitons in crystalline naphthalene, antracene, tetracene and pentacene
Abstract
The energies and oscillator strengths of exciton transitions in crystalline naphthalene, anthracene, tetracene and pentacene are calculated using second quantized boson theory. The lattice sums of Coulomb exciton transfer interactions consist of an Ewald sum of molecular point dipole-dipole interations and a direct sum of nondipolar interactions calculated from PPP wavefunctions using the atomic—multipole representation of transition charge densities. The calculated exciton energies and oscillator strengths are compared with available experimental data. For anthracene, inclusion of the nondipolar interactions leads to substantially better agreement between theory and experiment. For tetracene and pentracene, the factor group splittings of the lowest transition are determined primarily by crystal induced mixing with higher transitions. © 1980, All rights reserved.