About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
KDD 2016
Conference paper
Singapore in motion: Insights on public transport service level through farecard and mobile data analytics
Abstract
Given the changing dynamics of mobility patterns and rapid growth of cities, transport agencies seek to respond more rapidly to needs of the public with the goal of covering an efective and competitive public transport system. A more data-centric approach for transport planning is part of the evolution of this process. In particular, the vast penetration of mobile phones provides an opportunity to monitor and derive insights on transport usage. Real time and historical analyses of such data can give a detailed understanding of mobility patterns of people and also suggest improvements to current transit systems. On its own, however, mobile geolocation data has a number of limitations. We thus propose a joint telco-and-farecard-based learning approach to understanding urban mobility. The approach enhances telecommunications data by leveraging it jointly with other sources of real-time data. The approach is illustrated on the first and last-mile problem as well as route choice estimation within a densely-connected train network.