About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
NAACL-HLT 2009
Conference paper
Shrinking exponential language models
Abstract
In (Chen, 2009), we show that for a variety of language models belonging to the exponential family, the test set cross-entropy of a model can be accurately predicted from its training set cross-entropy and its parameter values. In this work, we show how this relationship can be used to motivate two heuristics for "shrinking" the size of a language model to improve its performance. We use the first heuristic to develop a novel class-based language model that outperforms a baseline word trigram model by 28% in perplexity and 1.9% absolute in speech recognition word-error rate on Wall Street Journal data. We use the second heuristic to motivate a regularized version of minimum discrimination information models and show that this method outperforms other techniques for domain adaptation. © 2009 Association for Computational Linguistics.