About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
EMNLP 2015
Conference paper
Show me your evidence - An automatic method for context dependent evidence detection
Abstract
Engaging in a debate with oneself or others to take decisions is an integral part of our day-today life. A debate on a topic (say, use of performance enhancing drugs) typically proceeds by one party making an assertion/claim (say, PEDs are bad for health) and then providing an evidence to support the claim (say, a 2006 study shows that PEDs have psychiatric side effects). In this work, we propose the task of automatically detecting such evidences from unstructured text that support a given claim. This task has many practical applications in decision support and persuasion enhancement in a wide range of domains. We first introduce an extensive benchmark data set taiiored for this task, which aifows training statisticai modefs and assessing their performance. Then, we suggest a system architecture based on supervised ieaming to address the evidence detection task. Finaify, promising experimentai resufts are reported.