About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Advances in Water Resources
Paper
Shock capturing data assimilation algorithm for 1D shallow water equations
Abstract
We propose a new data assimilation algorithm for shallow water equations in one dimension. The algorithm is based upon Discontinuous Galerkin spatial discretization of shallow water equations (DG-SW model) and the continuous formulation of the minimax filter. The latter allows for construction of a robust estimation of the state of the DG-SW model and computes worst-case bounds for the estimation error, provided the uncertain parameters belong to a given bounding set. Numerical studies show that, given sparse observations from numerical or physical experiments, the proposed algorithm quickly reconstructs the true solution even in the presence of shocks, rarefaction waves and unknown values of model parameters. The minimax filter is compared against the ensemble Kalman filter (EnKF) for a benchmark dam-break problem and the results show that the minimax filter converges faster to the true solution for sparse observations.