About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Applied Physics Letters
Paper
Semiconductor characterization with the scanning surface harmonic microscope
Abstract
The scanning surface harmonic microscope, in which a microwave signal is applied across a tip-sample tunneling gap and higher harmonics are detected, is sensitive to the capacitance/voltage characteristics of semiconductor samples on a nanometer scale. We demonstrate its sensitivity to a wide range of dopant concentrations on Si, and its applications as a dopant profiler. Depletion regions are delineated with remarkable sensitivity, and variations in dopant concentration over a 35-nm scale are discussed. Indications of a 5 nm resolution have been obtained. © 1994 American Institute of Physics.