Abstract
The production and spectroscopic characterization of fullerene-encapsulated metal-atom clusters is reported. In particular, both solution and solid-state electron paramagnetic resonance (EPR) spectra of Sc3C82 have been obtained. ScC82 also gives an EPR spectrum, but Sc 2Cn species - the most abundant metallofullerenes in the mass spectrum - are EPR-silent even though Sc2 is EPR-active in a rare-gas matrix at 4.2 K. The results suggest that the three scandium atoms in Sc3C82 form an equilateral triangle - as was previously suggested for Sc3 molecules isolated in a cryogenic rare-gas matrix. The spectrum of ScC82 has features similar to those found earlier for LaC82 and YC82, suggesting that it can also be described as a +3 metal cation within a -3 fullerene radical anion. An implication of this work is that production of macroscopic quantities of cluster-containing fullerenes may make possible the fabrication of exotic new structures with regular arrays of metal-atom clusters isolated in fullerene molecules, resulting in a new type of host/guest nanostructured material.