About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
CIKM 2014
Conference paper
Robust and skew-resistant parallel joins in shared-nothing systems
Abstract
The performance of joins in parallel database management systems is critical for data intensive operations such as querying. Since data skew is common in many applications, poorly engineered join operations result in load imbalance and performance bottlenecks. State-of-the-art methods designed to handle this problem offer significant improvements over naive implementations. However, performance could be further improved by removing the dependency on global skew knowledge and broadcasting. In this paper, we propose PRPQ (partial redistribution & partial query), an efficient and robust join algorithm for processing large-scale joins over distributed systems. We present the detailed implementation and a quantitative evaluation of our method. The experimental results demonstrate that the proposed PRPQ algorithm is indeed robust and scalable under a wide range of skew conditions. Specifically, compared to the state-of-art PRPD method, we achieve 16% - 167% performance improvement and 24% - 54% less network communication under different join workloads.