About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SIMAX
Paper
Reliable computation of the condition number of a tridiagonal matrix in O(n) time
Abstract
We present one more algorithm to compute the condition number (for inversion) of an n × n tridiagonal matrix J in O(n) time. Previous O(n) algorithms for this task given by Higham [SIAM J. Sci. Statist. Comput., 7 (1986). pp. 150-165] are based on the tempting compact representation of the upper (lower) triangle of J-1 as the upper (lower) triangle of a rank-one matrix. However they suffer from severe overflow and underflow problems, especially on diagonally dominant matrices. Our new algorithm avoids these problems and is as efficient as the earlier algorithms.