About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICASSP 2013
Conference paper
Reliable classification by unreliable crowds
Abstract
We consider the use of error-control codes and decoding algorithms to perform reliable classification using unreliable and anonymous human crowd workers by adapting coding-theoretic techniques for the specific crowdsourcing application. We develop an ordering principle for the quality of crowds and describe how system performance changes with the quality of the crowd. We demonstrate the effectiveness of the proposed coding scheme using both simulated data and real datasets from Amazon Mechanical Turk, a crowdsourcing microtask platform. Results suggest that good codes may improve the performance of the crowdsourcing task over typical majority-vote approaches. © 2013 IEEE.