About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SIGMOD/PODS 2012
Conference paper
Rectangle-efficient aggregation in spatial data streams
Abstract
We consider the estimation of aggregates over a data stream of multidimensional axis-aligned rectangles. Rectangles are a basic primitive object in spatial databases, and efficient aggregation of rectangles is a fundamental task. The data stream model has emerged as a de facto model for processing massive databases in which the data resides in external memory or the cloud and is streamed through main memory. For a point p, let n(p) denote the sum of the weights of all rectangles in the stream that contain p. We give near-optimal solutions for basic problems, including (1) the k-th frequency moment F k = Σ points p|n(p)| k, (2) the counting version of stabbing queries, which seeks an estimate of n(p) given p, and (3) identification of heavy-hitters, i.e., points p for which n(p) is large. An important special case of F k is F 0, which corresponds to the volume of the union of the rectangles. This is a celebrated problem in computational geometry known as "Klee's measure problem", and our work yields the first solution in the streaming model for dimensions greater than one. © 2012 ACM.