About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
WWW 2016
Conference paper
Recommendations in signed social networks
Abstract
Recommender systems play a crucial role in mitigating the information overload problem in social media by suggesting relevant information to users. The popularity of pervasively available social activities for social media users has encouraged a large body of literature on exploiting social networks for recommendation. The vast majority of these systems focus on unsigned social networks (or social networks with only positive links), while little work exists for signed social networks (or social networks with positive and negative links). The availability of negative links in signed social networks presents both challenges and opportunities in the recommendation process. We provide a principled and mathematical approach to exploit signed social networks for recommendation, and propose a model, RecSSN, to leverage positive and negative links in signed social networks. Empirical results on real-world datasets demonstrate the effectiveness of the proposed framework. We also perform further experiments to explicitly understand the effect of signed networks in RecSSN.