About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Conference paper
Rational algebraic theories and fixed-point solutions
Abstract
In a wide variety of situations, computer science has found it convenient to define complex objects as (fixed-point) solutions of certain equations. This has been done in both algebraic and order-theoretic settings, and has often been contrasted with other approaches. This paper shows how to formulate such solutions in a setting which encompasses both algebraic and order-theoretic aspects, so that the advantages of both worlds are available. Moreover, we try to show how this is consistent with other approaches to defining complex objects, through a number of applications, including: languages defined by context-free grammars; flow charts and their interpretations; and monadic recursive program schemes. The main mathematical results concern free rational theories and quotients of rational theories. However, the main goal has been to open up what we believe to be a beautiful and powerful new approach to the syntax and semantics of complex recursive specifications.