About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICSLP 2006
Conference paper
Rapid speaker adaptation using regression-tree based spectral peak alignment
Abstract
In this paper, regression-tree based spectral peak alignment is proposed for rapid speaker adaptation using the linearization of VTLN. Two different regression classes are investigated: phonetic classes (using combined knowledge and data-driven techniques) and mixture classes. Compared to MLLR and VTLN, improved performance can be obtained for both supervised and unsupervised adaptations on both medium vocabulary and connected digits recognition tasks. To further improve the performance, MLLR was integrated into this regression-tree based peak alignment. Experimental results show that the performance improvements can be achieved even with limited adaptation data. speaker.