About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Rank-one approximation to high order tensors
Abstract
The singular value decomposition (SVD) has been extensively used in engineering and statistical applications. This method was originally discovered by Eckart and Young in [Psychometrika, 1 (1936), pp. 211-218], where they considered the problem of low-rank approximation to a matrix. A natural generalization of the SVD is the problem of low-rank approximation to high order tensors, which we call the multidimensional SVD. In this paper, we investigate certain properties of this decomposition as well as numerical algorithms.