About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
WSDM 2016
Conference paper
Querying and tracking influencers in social streams
Abstract
Influence analysis is an important problem in social network analysis due to its impact on viral marketing and targeted advertisements. Most of the existing influence analysis methods determine the influencers in a static network with an influence propagation model based on pre-defined edge propagation probabilities. However, none of these models can be queried to find influencers in both context and time-sensitive fashion from a streaming social data. In this paper, we propose an approach to maintain real-time influence scores of users in a social stream using a topic and time-sensitive approach, while the network and topic is constantly evolving over time. We show that our approach is efficient in terms of online maintenance and effective in terms various types of real-time context- and time-sensitive queries. We evaluate our results on both social and collaborative network data sets.