About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ISIT 2000
Conference paper
Quantum arithmetic coding
Abstract
We study the problem of compressing a block of symbols (a block quantum state) emitted by a memoryless quantum Bernoulli source. We present a simple-to-implement quantum algorithm for projecting, with high probability, the block quantum state onto the typical subspace spanned by the leading eigenstates of its density matric. We propose a fixed-rate quantum Shannon-Fano code to compress the projected block quantum state using a per symbol code rate that is slightly higher than the von Neumann entropy limit. Finally, we propose quantum arithmetic codes to efficiently implement quantum Shannon-Fano codes.