About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Discrete Mathematics
Paper
Pruning processes and a new characterization of convex geometries
Abstract
We provide a new characterization of convex geometries via a multivariate version of an identity that was originally proved, in a special case arising from the k-SAT problem, by Maneva, Mossel and Wainwright. We thus highlight the connection between various characterizations of convex geometries and a family of removal processes studied in the literature on random structures. © 2008 Elsevier B.V. All rights reserved.